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Abstract

We propose White Point-Illuminant Consistency
(WPIC) algorithm that detects manipulations in im-
ages based on the phenomenology of color. Segmented
regions of the image are converted to chromaticity co-
ordinates and compared to the white point reported in
the camera’s EXIF file. In manipulated images, the
chromaticity coordinates will have a shifted illuminant
color relative to the EXIF-reported white point. Ab-
sent manipulation, chromaticity coordinates will be in
agreement with the specified white point. We detect
image manipulations using a convolutional neural net-
work operating on a histogram of relevant statistics that
indicate the white point shift. We verify this using a
real world data set to demonstrate its effectiveness.

1. Introduction

In digital media forensics, the ability to verify the
provenance of images is important. With advances in
image manipulation technology, it has become com-
monplace to see edited images on social media, the
shear volume of which makes it impossible to authen-
ticate the images’ integrity by human experts. The
goal of image forensics work is to identify manipulated
images automatically [13, 15, 2, 5, 1, 7, 17].

In our work, we draw inspirations from methods in
[2, 5, 1, 7, 17] to detect image manipulations based on
color appearance. Specifically, “color” of an observed
light stems from an interaction between the illumina-
tion and the reflectance of the object surface. The
observed light, therefore, obeys certain rule or struc-
ture that is consistent with the physical phenomenol-
ogy of color. One such structure is a dichromatic image
model, where the specular and the diffuse components
of the reflected light affect the the overall appearance of
the object color in a predictable manner, proven useful
in color constancy [10] [6] and computer graphics [14].

Our hypothesis is that when a color image is ma-

(a) (b)
Figure 1. (a) A DSO-1 dataset image [5]. The woman on
the right has been spliced in. (b) The proposed WPIC test
statistics (shown as pixel intensities) computed over each
superpixel strongly suggest that the white point and illumi-
nant color over the spliced woman’s dress are inconsistent.

nipulated, the manipulated color pixels become incon-
sistent with the color phenomenology. If a portion of
an image is manipulated (e.g. image splice), it would
appear as an outlier with respect to the dichromatic
image model, while a global manipulation would result
in a violation of the physical model entirely. Thus we
develop a new classifier aimed at detecting inconsisten-
cies stemming from image manipulations that affect the
object color appearance. Specifically, we leverage the
colorimetric techniques described in [16] and [9] that
make use of the chromaticity coordinate representation
to help decompose the specular and diffuse components
of the object appearance. We can compare the specular
component with the EXIF-reported white point (which
is typically corrected to D65 standard illumination) to
determine adherence with the dichromatic model.

In Section 2 we review the requisite mathematics to
understand the dichromatic model and the white point.
In Section 3, we analyze the subtle distinctions between
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(a) Fresnel reflection (b) Microfacets
Figure 2. Illustration of Fresnel reflection model. (a) Contributions from specular, boom, and diffuse components depend on
the incident and viewing angle of the object. (b) Microfacets randomize the surface normal. A stationary camera observes
random specular/boom/diffuse combinations.

the notion of illuminant and the white point, and how
this affects the way image splice attacks are carried out.
In Section 4 we develop the proposed WPIC algorithm
and verify the effectiveness experimentally in Section
5, before making concluding remarks in Section 6.

2. Background

2.1. Fresnel Reflection

The notion of “color” is a property of light as per-
ceived by human eye and brain. It is a perceptual
representation of light spectrum as encoded by three
types of photoreceptors in eye called cones. In camera
hardware, this information is typically encoded by red,
green, and blue intensity values (RGB). While color
perception is an important and active area of research
[11], in this paper we focus on the color phenomenol-
ogy, or the physics of light interacting with light which
we infer based on RGB values recorded in a camera.

A camera captures an image by recording light re-
flecting objects illuminated by a light source (the “il-
luminant”). Known as Fresnel reflection, the spatial-
spectral-angular appearance of an object is comprised
of diffuse, specular, and haze/boom reflection. Thus
the camera observation O = (OR, OG, OB)

T ∈ R
3 is

modeled as their convex combination [8]:

O =αL+ diag(L)R+ diag(L) diag(E)R

=αL+ diag(L)(I + diag(E))R
︸ ︷︷ ︸

D

(1)

where α ∈ [0, 1] is a mixture weight that controls the
contribution the contributions from diffuse, specular,
and boom components; I ∈ R

3×3 is an identity matrix;
L = (LR, LG, LB)

T ∈ R
3 denote the RGB tristimulus

values of illumination color; R = (RR, RG, RB)
T ∈

[0, 3]3 denote the RGB reflectance values of object

diffuse color; and E = (ER, EG, EB)
T ∈ [0, 1]3 is

the RGB reflectance values of an environment such
that diag(L)E is an ambient light also illuminat-
ing the diffuse object to yield the ambient response
diag(L) diag(E)R. In the subsequent discussion,

D = diag(L)(I + diag(E))R (2)

is referred to as the all-encompassing “diffuse” compo-
nent representing the Lambertian reflection. As illus-
trated by Figure 2(a), the value of α depend on the
object material as well as the incident and viewing an-
gles of the light onto the object surface.

2.2. Dichromaticity

Let M ∈ R
3×3 denote transformation from camera-

specific RGB color space (“O”) to device-independent
XYZ (“X”) color spaces. Rewriting (1) yields:

X = MWO = αMWL+MWD (3)

whereW ∈ R
3×3 is a white balance matrix (see Section

2.3). Since “color” is invariant to the light intensity, the
chromaticity coordinate representation normalizes X:

x =
X

‖X‖1
=

αMWL+MWD

‖αMWL+MWD‖1
=β

MWL

‖MWL‖1
︸ ︷︷ ︸

ℓ

+(1− β)
MWD

‖MWD‖1
︸ ︷︷ ︸

d

,
(4)

where ‖ · ‖p is an Lp norm, and

β =
α‖MWL‖1

‖αMWL+MWD‖1
. (5)

The significance is that the chromaticity coordinate x

of the recorded light is a convex combination of the
illuminant chromaticity ℓ := MWL

‖MWL‖1

∈ [0, 1]3 and

2139



(a) (b) (c)
Figure 3. Conceptual illustration of the test statistics. (a) A scatter plot of chromaticity coordinates from pixels belonging
to the same microfaceted object. The line formed by the scatter plot intersects the illuminant/white point (yellow ×) and
the diffuse (green ×) colors. (b) A scatter plot of pixels that have been manipulated. The illuminant/specular (blue ×) no
longer coincides with the white point. The test statistics is the Eucledian distance ε between the white point (yellow ×)
and the line formed by the scatter plot (see red arrow); and the Pearson product-moment correlation coefficient ρ of the
scatter plot (see green arrow). The test statistics is computed for each superpixel. (c) Illuminant error histogram (IET)
is a two-dimensional histogram of ε and ρ, accumulated over all superpixels. If the image is authentic, there is a large
concentration of “small ε, high ρ.” The distance ε is unreliable when ρ is small. IET is the input into our classifier (CNN).

(a) Input image (b) Chromaticity coordinates (b) Superpixel
Figure 4. (a) Example input image. (b) Chromaticity coordinate normalize by intensity, leaving only color variation. Mapped
to RGB for visualization. (c) Superpixels group spatially neighboring pixels of similar appearance.

the diffuse chromaticity d := MWD

‖MWD‖1

∈ [0, 1]3. Thus

the chromaticity coordinate of the observed light lays
on a line segment between ℓ and d, as shown in Figure
3(a). This property is known as the dichromaticity.

Recall that α ∈ [0, 1] depend on the inci-
dent/viewing angle of the light relative to the object
surface. In the real world, the object surface areas are
never as idealized as shown in Figure 2(a). Microfacets
(small discontinuities across a surface) cause the the
surface normal of the object to have a randomized an-
gles, as in Figure 2(b). Thus α ∈ [0, 1] and β ∈ [0, 1]
are stochastic—a stationary camera observes random
specular/boom/diffuse combination as determined by
a random convex combination of the illuminant color
ℓ ∈ [0, 1]3 and the diffuse color d ∈ [0, 1]3 (analogous
to rotating a camera to various angles, as in Figure

2(a)). Consider the scatter plot of chromaticity coor-
dinates x = βℓ + (1 − β)d within one single object,
as shown in Figure 3(a). Thanks to randomized β val-
ues, a line formed by the cluster of points intersects ℓ.
This colorimetric property in (4) has been exploited in
white balance methods in [16, 9] and computer graphics
[14]. We leverage (4) in the proposed image forensics
method, described below.

2.3. White Point and White Balance

The illuminant color L = (LR, LG, LB)
T ∈ R

3

varies from scene to scene, affecting the observed light
O = (OR, OG, OB)

T . Drawing on the fact that the
human perception of color is (approximately) invari-
ant to the illuminant color, digital cameras perform
“white balance” to compensate for the illuminant color.
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Figure 5. Example of image splice. The objects on the
left and right were spliced with and without color transfor-
mation (by Q), respectively. The color transformation is
needed to match the ambient light better.

Specifically, white balance maps the illuminant color
ℓ ∈ [0, 1]3 to a white point w ∈ [0, 1]3, or a reference
white/neutral in a color representation. White point
is a quantity that is determined by the camera system
and reported by the EXIF file in digital images.

Mathematically, the matrix W ∈ R
3×3 is chosen

by the white balance algorithm internal to the camera
to map the illuminant color WL and illuminant chro-
maticity ℓ = MWL

‖MWL‖1

to the white point w (typically

the D65). Hence in an authentic image, the illuminant
color coincides with the white point (i.e. w = ℓ).

3. Color Issues In Image Splicing

Because the white balance “standerdizes” the illumi-
nation color to the white point, it may seem as though
image splicing is easy—after white balance, objects
represented in the image should appear to be invari-
ant to indoor and outdoor lighting, for example. In
reality, the objects taken in differing environments do
not match in color appearance. To understand why
this is the case, consider the effect that white balance
has on the diffuse component D:

WD = W diag(L)R+W diag(L) diag(E)R. (6)

By design,W diag(L) has a standard white point color.
However, white balance does not map the ambient light
W diag(L) diag(E) to the white point w.

Denote by E and E′ the donor and the probe
image environments, respectively. Then the white
balanced donor object WD spliced into a new
scene would appear “out of place” because human
eye expects to see W diag(L) diag(E′)R instead of
W diag(L) diag(E)R. See Figure 5 for an example.
Hence additional color processing is needed to blend
the donor object into the probe environment. Specifi-
cally, an attacker needs to apply a color transformation
matrix Q ∈ R

3×3 satisfying the following property:

QWD =QW diag(L)(I + diag(E))R

=W diag(L)(I + diag(E′))R.
(7)

Solving for Q yields

Q =W diag(L)(I + diag(E′))

× (I + diag(E))−1 diag(L)−1W−1.
(8)

In practice, the attacker is likely to find Q empirically
by visual inspection, tweaking the color until QWD

blends into the probe scene (i.e. not mathematically).
But the achieved effect is the same.

To summarize, the “post-color transformed” spliced
regions of the images have the color

Y = MQX. (9)

Its corresponding chromaticity coordinate is

y =
Y

‖Y ‖1
=γ

MQWL

‖MQWL‖1
︸ ︷︷ ︸

ℓ′

+(1− γ)
MQWD

‖MQWD‖1
︸ ︷︷ ︸

d′

,
(10)

where γ =
α‖MQWL‖1

‖αMQWL+MQWD‖1
. (11)

To the human eye, the spliced color y may appear
more convincingly blended into the probe image than
x. However, the specular component ℓ′ has moved
away from the white point color w reported by the
EXIF—a fact we exploit in our proposed algorithm.
See Figure 3(b) for illustration.

4. Proposed Methodology

4.1. Hypothesis and Test Statistics

We propose a method to detect image forgery by
constructing a hypothesis test designed to detect a vi-
olation of the dichromatic model in (4). Hence we con-
sider a hypothesis test of the following form:

{

H0 : ℓ = w

H1 : ℓ 6= w,
(12)

where the null hypothesis H0 is a proxy for the sce-
nario that the image is authentic; and the alternative
hypothesis H1 indicates the presence of image manip-
ulation as determined by the fact that the illuminant
color and the white point do not coincide.

Let Λ = {x1, . . . ,xn} be a group of pixels belonging
to the same microfaceted object surface. Denote by

p(t) = µ+ s · t (13)

a parametric equation (about t ∈ R) for a line that best
fits Λ, where µ ∈ [0, 1]3 and s ∈ R

3 are intercept and
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Figure 6. Block diagram of the proposed method.

slope of the line, respectively. From the dichromaticity
analyzed in Section 2.2, we know that this line inter-
sects the illuminant (specular) color:

∃t ∈ R ∋ ℓ = p(t). (14)

The same line p(t) intersects the white pointw ∈ [0, 1]3

also if the image is authentic (the white point and illu-
minant color coincide), while the line p(t) moves away
from w in manipulated images. Thus we consider the
error between w and p(t) as test statistics:

ε = min
t∈R

‖p(t)−w‖2 =

∥
∥
∥
∥
µ+ s

〈s,w − µ〉
〈s, s〉 −w

∥
∥
∥
∥
2

.

(15)

Intuitively, ε represents the perpendicular distance
from the line to the white point w.

In practice, we compute the line p(t) from Λ via
principal component analysis. Specifically, let µ ∈
[0, 1]3 and Σ ∈ R

3×3 be the mean and covariance ma-
trix of these pixels, respectively, computed as:

µ =
1

n

n∑

k=1

xk, Σ =
1

n

n∑

k=1

(xk − µ)(xk − µ)T . (16)

The Euclidean distance between x ∈ Λ and p(t) in
(13) is minimized when s is the eigenvector of Σ cor-
responding to the largest eigenvalue. We assess the
quality of this line fitting by the magnitude of Pearson
product-moment correlation coefficient,

ρ =

∣
∣
∣
∣

Σ12√
Σ11Σ22

∣
∣
∣
∣
, (17)

where Σij denotes the (i, j)th entry in matrix Σ. Intu-
itively, ρ represents the strength of the linear relation-
ship among the pixels {x1, . . . ,xn}. In our work, we
treat ρ as an additional test statistics.

To summarize, we make inference on the hypothesis
test in (12) via the test statistics (ε, ρ). The error ε is

expected to be small if the image is authentic because
the line p(t) intersects the white point w. The value of
ε may become large if the image has been manipulated,
or if ρ is small (i.e. our confidence in a line is low).

4.2. White PointIlluminant Consistency Algorithm

A high-level schematic of the proposed White Point-
Illuminant Consistency (WPIC) algorithm for detect-
ing manipulated images is shown in Figure 6. The de-
tailed description of the blocks are provided below.

Preprocessing

Assuming that a color image is encoded in sRGB space
(true for most modern digital cameras), we begin by
estimating the XYZ coordinate X from a given color
image. Specifically, we apply inverse gamma correction
to each sRGB pixel value to recover the corresponding
linear sRGB coordinates. We then convert the linear
sRGB values to XYZ coordinates via a matrix trans-
formation. Finally we compute the chromaticity coor-
dinates via x = X/‖X‖1. The recovered chromaticity
coordinate x has a specular/diffuse decomposition as
described by the dichromatic model in (4).

Superpixel and Illuminant Error Histogram

Let k ∈ {1, . . . ,K} be the index of superpixels, and
denote by (εk, ρk) the test statistics (as described in
Section 4.1) computed from the pixels within the kth
superpixel. Drawing on prior by work in [4, 3], we
propose the notion of illuminant error histogram (IEH),
or a two dimensional histogram of the test statistics:

H(i, j) =

K∑

k=1

δ
(

i−
⌊ εk
∆ε

⌋)

δ

(

j −
⌊
ρk
∆ρ

⌋)

=#

{

k ∈ {1, . . . ,K}
∣
∣
∣
∣
i =

⌊ εk
∆ε

⌋

, j −
⌊
ρk
∆ρ

⌋}

,
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(a) authentic image (b) color manipulated image (c) spliced image
Figure 7. Examples of Illuminant Error Histogram (IEH).

where δ(·) is a Kronecker delta function, ⌊·⌋ denotes
floor function, and ∆ε and ∆ρ are the histogram bin
sizes. We interpret H as a global feature for the image.

Consider examples of IEH in Figure 7(a), computed
from an authentic image. If the dichromatic model
in (4) holds, and if the mixing parameter β is indeed
stochastic due to microfacets, then we expect small εk
and high ρk values—a fact verified empirically by IEH
in Figure 7(a). In some superpixels, ρk is small to
indicate that the line in (13) does not fit the pixels
in Λ well—this may have occurred because the super-
pixel grouping of pixels span across multiple objects in
the scene, or due to the heterogeneity of the texture
regions. As such, our classifier must tolerate large ε
value when ρ is small (due to increased uncertainty).

Compare this to the IEH in Figure 7(b), computed
from a color transformed image. Because the colors
have been manipulated globally (e.g. color balance),
IEH is entirely shifted away from the ε = 0 axis (even
with large ρk value), where the offset roughly repre-
sents the deviation of the new illuminant color relative
to ℓ. On the other hand, splicing merges multiple illu-
minations together, resulting in “high ε, high ρ” test
statistics. See Figure 7(c). We conclude that IEH is
sensitive to image manipulations, providing opportuni-
ties to detect edited images.

Classification

We designed a convolutional neural network de-
signed to detect the presence of image manipulation
based on the IEH, modeled after the histogram-based
CNN in [4, 3]. The configuration of CNN is shown in
Figure 8. The input into the CNN is a 101×101 IEH,
normalized by the maximum value. In the first stage,
there are two Conv-ReLU layers of 3×3×64, followed
by a MaxPool by stride 2. Next it passes through the
second stage with two 3×3×128 Conv-ReLu layers, fol-
lowed by a MaxPool by stride 2. In the third stage,
there are four 3×3×256 Conv-ReLu layers, followed by

Figure 8. CNN layers.

Figure 9. ROC curve for DSO-1 dataset[5].

a MaxPool by stride 2. The fourth level consists of
three 3×3×512 Conv-Relu layers, followed by a Max-
Pool by stride 2. In the final stage, data is combined by
a fully connected layer, whose output is used to make
a final determination on whether an image is manip-
ulated or not by thresholding the output score values
yielded by the previous layer.

5. Experimental Verification

5.1. Experiment Setup

The DSO-1 dataset was developed to test algorithms
that detect image splicing [5]. DSO-1 consists of 200
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Table 1. Area under curve (AUC) computed for DSO-1 [5].

Category Method AUC

Supervised
Carvalho [5] 86.3%
Carvalho [1] 97.2%

Unsupervised

Carvalho[5] 63.0%
Gholap [7] 55.5%
Wu[17] 57.0%
Proposed 76.0%

images—100 authentic and 100 manipulated images,
which are created by splicing an additional person into
a picture that already had at least one other person.
Images are comprised of indoor and outdoor scenes,
and the image resolution is 2048×1536 pixels.

Due to the limited size of the DSO-1 dataset, we aug-
ment the training data with the image forensics dataset
from NIST Media Forensics Challenge (MFC18) [12].
This dataset is comprised of many manipulation types,
including splicing, color balancing, among others. In
order to compare our performance to the prior art,
testing was conducted exclusively on DSO-1. NIST
MFC18 dataset was used only for training purposes.

5.2. CNN Training Procedure

In order to overcome the difficulties of relatively
small dataset, we developed a multi-step training pro-
cedure. As a first step to CNN training, we take au-
thentic images and perform “random” white balance—
adjusting white point to a color temperature that is not
D65 (i.e. to simulate the behavior of Q matrix in (10)).
We then take convex combinations of two IEHs—first
is an IEH corresponding to color transformed images
(proxy for donor image), and the second is an IEH of
another image without color transformation (proxy for
probe). These “synthetic” spliced IEHs were used to
train the CNN initially. During the second stage of
CNN training, we used the MFC18 dataset. We ran-
domly selected 8000 manipulated and 8000 authentic
images, which was subsequently used to update the
CNN coefficients via the transfer learning. In our fi-
nal step of training, we carried out a five-fold cross-
validation to fine-tune the CNN using DSO-1 dataset.

5.3. Results

The receiver operator characteristics (ROC) curve
for the DSO-1 dataset is shown in Figure 9—it is av-
eraged over the testing images of the cross-validated
results. As tabulated in Table 1, the area under the
curve (AUC) is 76.0%, which is signifianctly better
than chance (which has a 50% AUC).

We compared our results to Carvalho2013 method in
[5], Carvalho2016 method in [1], Gholap2008 method

in [7], and Wu2011 method in [17]. The AUC values
for the DSO-1 dataset were reported in [5, 1], which
we reproduced in Table 1. The best performing meth-
ods were “supervised”—i.e., a human operator manu-
ally segemented faces in the DSO-1 images. The best
performance among the unsupervised state-of-the-art
methods was also Carvalho2013 method in [5] with au-
tomatic face recognition replacing the human operator,
achieving 63.0% AUC. Despite the “automatic” ap-
proach, this method assumes a priori knowledge that
the DSO-1 dataset’s splicing included human faces.
That is, the Carvalho2013 metho can not be applied
to images without faces, whereas our method is more
general since it does not restrict the semantic con-
tent of the image. Despite this, our proposed method
achieved a higher AUC score, and is compatible with
fully-automated forensic analysis.

5.4. Discussions

In the context of the color-based image forensics
techniques, the proposed WPIC algorithm shares with
the state-of-the-art methods in [2, 5, 1, 7, 17] the goal
to detect inconsistencies in illumination. We highlight
two major differences. First, the previous methods
leveraged various white balance techniques for spatially
local illuminant color estimation. By and large, these
methods give “black box” treatment to white balance
techniques, where the novelty focused on higher level
details of how the estimated illuminant colors were
handled. By contrast, WPIC is developed at a lower
level, explicitly modifying the white balance techniques
of [16, 9] in order to repurpose the theory for image
forensics. Second, the previous methods relied on the
“across patch” variation among estimated local illumi-
nant. Our WPIC work instead focused on the “within
patch” variations of the chromaticity coordinates for
the evidences of image forgery. In our future research,
we plan to explore the joint optimization of “across
patch” and “within patch” variations.

6. Conclusion

In this paper, we proposed a novel methodology for
detecting image manipulations by localizing violations
of dichromatic property of Fresnel reflection model.
Specifically, we convert the color images into chro-
maticity coordinate, and measure the shift of illumi-
nation color away from the white point that may have
occurred due to image spicing or color manipulations.
This shift is then classificed using CNN. The experi-
mental results showed that our method is approaching
the performance of the state-of-the-art supervised im-
age forensics technique, and surpasses the performance
of the state-of-the-art unsupervised methods.
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(a) (b) (c) (d)
Figure 10. Scatter plot of chormaticity coordinates from (a,b) authentic and (c,d) manipulated image patches. The white
point is indicated by the ×. The shift of the scatter plot away from white point is evident in manipulated images.
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